Communications to the Editor

Non Nucleic Acid Inhibitors of Protein DNA **Interactions Identified through Combinatorial Chemistry**[†]

Shawn Y. Stevens,[‡] Barry A. Bunin,[§] Matthew J. Plunkett,[§] Patrick C. Swanson,[‡] Jonathan A. Ellman,*,[§] and Gary D. Glick*,[‡]

> Department of Chemistry, University of Michigan Ann Arbor, Michigan 48109-1055 Department of Chemistry University of California-Berkeley Berkeley, California 94720

> > Received July 17, 1996

The autoimmune disease systemic lupus erythematosus (SLE) afflicts at least 500 000 Americans, significantly shortening their life expectancy.¹ Women are affected in 90% of cases and African Americans are several times more likely to develop the disease than Caucasians.² Antibodies that bind single- and double-stranded DNA (ssDNA and dsDNA, respectively) are present in the serum of lupus patients.³ A subset of these antibodies are also pathogenic: they mediate a complementdependent inflammatory response in kidney tissue (glomerulonephritis) often resulting in renal damage.⁴ Nonspecific immunosupressive and cytotoxic agents can curtail glomerulonephritis in some patients; yet, in others they are ineffective and side effects often force discontinuation of treatment.⁵ A clear need exists for specific, broadly effective, and better tolerated therapeutics.

Recognition of DNA adherent to the glomerular basement membrane can anchor pathogenic anti-DNA to glomeruli, the sites of injury within kidney tissue.⁶ Hence, blocking this binding should be an effective (and as of yet unexplored) way to combat anti-DNA-mediated glomerulonephritis.⁷ As a first step in testing this hypothesis, we describe non nucleic acid inhibitors that block DNA recognition by an anti-DNA monoclonal antibody (mAb). These compounds were identified by library screening and represent the first reported use of a combinatorial small-molecule library to identify inhibitors of a protein without precise knowledge either of the natural ligand that is recognized in vivo or of other known inhibitors.^{8,9}

For these experiments, library screening was conducted using 11F8 which is a DNA-binding mAb isolated from a lupus-prone

§ University of California-Berkeley.

- (b) S. III Dubots Lupus Erymematosus, wantee, D. S., Hann, D. H., Eds., Lea & Febiger: Philadelphia, PA, 1993; pp 49–57.
 (3) Tan, E. M. Adv. Immunol. 1989, 44, 93–151.
 (4) Wardel, E. N. Glomerulopathies. Cell Biology and Immunology; 170–2007 Harwood Academic Publishers: Amsterdam, 1996; pp 179–205. (5) Felson, D. T.; Anderson, J. N. Engl. J. Med. **1984**, 311, 1528–1533.
- Steinberg, A. D.; Steinberg, S. C. Arthritis Rheum. 1991, 34, 945–950.
 (6) Ohnishi, K.; Ebling, F. M.; Mitchell, B.; Singh, R. R.; Hahn, B. H.;
- Tsao, B. P. Int. Immunol. 1994, 6, 817–830. Bernstein, K. A.; Di Valerio,
 R.; Lefkowith, J. B. J. Immunol. 1995, 154, 2424–2433.

(7) Anionic dyes have been used to inhibit serum samples containing anti-DNA, see: Ben-Chetrit, E.; Eliat, D.; Ben-Sasson, S. A. *Immunology* 1988, 65, 479-485

(8) The exact DNA antigen(s) recognized in vivo are not known.

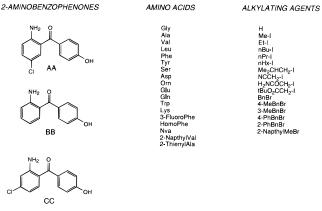


Figure 1. Library components.

mouse.11 11F8 binds ssDNA exclusively and shows a base preference for thymine.^{11,12} Several lines of evidence suggest that stacking of thymine bases between aromatic amino acids in the binding site of 11F8 is important for stabilizing 11F8. ssDNA complexes.¹¹ Because specific "hydrophobic stacking"¹³ may be important for binding, we postulated that aromatic compounds could compete with thymine for binding to 11F8. On the basis of this rationale, we elected to screen a 1,4benzodiazepine library.14

Our library was constructed from three different 2-aminobenzophenones, 35 amino acids, and 16 alkylating agents (Figure 1)¹⁵ using previously reported methods.¹⁶ Enantiomeric amino acids were pooled, and the synthesis was performed using the Chiron Mimotopes multipin method to provide 1680 different 1,4-benzodiazepines within individual wells of 96-well microtiter plates.¹⁷ Racemic benzodiazepines were screened by competition ELISA for the ability to inhibit 11F8 from binding to ssDNA.¹⁰ Approximately 30% of the molecules inhibit to some extent at 20 μ M, and several possess IC₅₀ values $\leq 20 \ \mu$ M, comparing favorably to those of other first generation inhibitors.¹⁸ Most of the compounds that inhibit binding incorporate 2-aminobenzophenone AA, indicating that this particular aminobenzophenone may make important contacts with the antibody. This conclusion is also supported by the observation that for a given R_1 and R_2 , the compounds

(11) Swanson, P. C.; Ackroyd, C.; Glick, G. D. Biochemistry 1996, 35, 1624-1633.

(12) 11F8 does not cross-react with dsDNA, other nucleic acids, ribonucleoproteins, or structurally related antigens such as phospholipids.¹¹ (13) By stacking we refer to intercalation of a DNA base in-between

two aromatic amino acids on the protein. For an example of this type of stacking, see: Swanson, P. C.; Cooper, B. C.; Glick, G. D. J. Immunol. 1994, 152, 2601–2612.

 (14) Ellman, J. A.; Thompson, L. A. Chem. Rev. 1996, 96, 555-600.
 (15) Bunin, B. A.; Plunkett, M. J.; Bray, A. M.; Ellman, J. A. New J. Chem. In press. This is an expanded version of the library reported in ref 16.

(16) Bunin, B. A.; Plunkett, M. J.; Ellman, J. A. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 4708-4712.

(17) Valerio, R. M.; Bray, A. M.; Maeji, N. J. Int. J. Pept. Protein Res. 1994, 44, 158–165.

(18) For example, see: Combs, A. P.; Kapoor, T. M.; Feng, S.; Chen, J. K.; Daudé-Snow, L. F.; Schreiber, S. L. J. Am. Chem. Soc. 1996, 118, 287–288. Pauwels, R.; Andries, K.; Desmyter, J.; Schols, D.; Kukla, M. J.; Breslin, H. J.; Raeymaeckers, A.; Van Gelder, J.; Woestenborghs, R.; Heykants, J.; Schellekens, K.; Janssen, M. A. C.; DeClerq, E. D.; Janssen, P. A. J. *Nature* **1990**, *343*, 470–474.

^{*} Authors to whom correspondence should be addressed. For G.D.G.: phone (313) 764-4548; fax (313) 764-8815; e-mail gglick@umich.edu. For J.A.E.: phone (510) 642-4488; fax (510) 642-8369; e-mail jellman@ cchem.berkeley.edu.

The first four authors made equal contributions to this research.

[‡] University of Michigan.

⁽¹⁾ Lawrence, R. C.; Hochberg, M. C.; Kelsey, J. L.; McDuffie, F. C.; Medsger, T. A., Jr.; Felts, W. R.; Shulman, L. E. J. Rheumatol. 1989, 16, 427 - 441

⁽²⁾ Hochberg, M. C. The Epidemiology of Systemic Lupus Erythema-tosus. In *Dubois' Lupus Erythematosus*; Wallace, D. J., Hahn, B. H., Eds.;

⁽⁹⁾ The best inhibitors obtained from screening a library of pentapeptides composed of the common 20 L-amino acids by competition ELISA10 have IC_{50} values > 50 μ M. Glick, G. D. Unpublished observations

⁽¹⁰⁾ See Supporting Information for further details.

Figure 2. Structures and inhibitory potency of selected 1,4-benzodiazepines determined by competition ELISA in the initial library screen (measured at 20 μ M inhibitor). In this assay,¹⁰ 20 μ M d(pT)₆ completely blocks binding. The data presented represent the average of at least two separate determininations and are within ±15%. The inhibition data for 1 and 2 were confirmed using purified and fully characterized compounds prepared on solid support.

that incorporate aminobenzophenone AA inhibit to a greater extent than those that incorporate aminobenzophenones BB or CC.

The best inhibitors generally could be placed into two broad classes: one group possesses R_1 = hydrogen bond donoracceptor and R_2 = an aromatic or nonpolar group and the other has R_1 = aromatic and R_2 = H or Me (Figure 2). To help elucidate the structural features that are important for binding, we prepared several derivatives of **1**, one of the most potent inhibitors. Removing either the aromatic chloride or the phenolic OH, replacing the napthylalanine with phenylalanine, or methylating the phenolic oxygen affords molecules with IC₅₀ values >50 μ M, as determined by competition gel shift measurements.¹⁹ However, replacing the *N*-methyl group with hydrogen does not affect inhibition. Furthermore, it was observed that only the *R*-isomer of **1** inhibits binding.²⁰ When this isomer is titrated into a solution of 11F8, the intrinsic protein fluorescence produced upon excitation at 283 nm is quenched by 30%, similar to that obtained when titrating with oligo(dT).²¹ By contrast, the *R*-isomer of **1** quenches to a much lesser extent. Collectively, these data suggest that only the *R*-isomer binds specifically to 11F8 and that binding is not due to nonspecific (hydrophobic) interactions. Furthermore, that **1** quenches the protein fluorescence suggests that, upon binding, this benzodiazepine may interact with the unique tryptophan in the combining site of 11F8.²²

In summary, we have demonstrated the use of combinatorial chemistry to identify inhibitors of an anti-DNA mAb.²² It is not clear how potent anti-DNA antagonists must be *in vitro* to show an effect *in vivo*. Natural mechanisms exist to clear immune complexes, and in lupus, these pathways become saturated, ultimately leading to renal damage and failure.²³ Therefore, a weak inhibitor *in vitro* may produce a large effect *in vivo* even if it does not completely block all antibody•DNA interactions. Testing of **1** in lupus-prone mice is currently underway. Finally, because murine and human anti-DNA possess similar binding-site structures, the compounds described here may likely be valuable leads for inhibiting the anti-DNA produced in patients afflicted with SLE.²⁴

Acknowledgment. This work was supported in part by NIH grants GM 46831 (G.D.G.) and GM 50353 (J.A.E.).

Supporting Information Available: Details on the synthesis of the inhibitors along with descriptions of the ELISA and gel shift assays (5 pages). See any current masthead page for ordering and Internet access instructions.

JA962452A

(23) Fournie, G. J. Kidney Int. 1988, 33, 487-497.

(24) Foster, M. H.; Cizman, B.; Madaio, M. P. Lab. Invest. 1993, 69, 494-507.

⁽¹⁹⁾ These experiments were conducted using purified and fully characterized inhibitors. $^{10}\,$

⁽²⁰⁾ As expected, the R-isomer is roughly 2-fold more potent than racemic **3** in the inhibition assays.

⁽²¹⁾ The maximum quenching determined using oligo(dT) as the ligand is \leq 40%.

⁽²²⁾ Swanson, P. C.; Yung, R.; Eagan, M.; Norris, J.; Blatt, N. B.; Johnson, K. J.; Richardson, B. C.; Glick, G. D. J. Clin. Invest. **1996**, *97*, 1748–1760.